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Protecting archival data

2

❖ Mirroring: keep multiple copies
• All copies are identical
• Read any copy
• Write all copies

❖ Erasure codes: use multiple 
“chunks” for redundancy
• Read from desired chunk(s)
• Write is more complex

• Write an entire stripe, or
• Read-Modify-Write to update data 

and parity
• Lower storage overhead!
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How do erasure codes work?

3

❖ Error correcting code: find the error and rebuild it
❖ Erasure correcting code: given the broken (erased location), rebuild it

• Most archival storage systems are this type
• Use hashing to figure out which chunks are broken

❖ Erasure correcting codes use linear equations to rebuild missing data 
• Each symbol in the “row” has its own equation
• n data values & m erasure correcting symbols
• n data values ➡ need n equations to rebuild

D0 D1 D2 D3 P Q

D0 = D0
D1 = D1
D2 = D2
D3 = D3
D0 ⊕ D1 ⊕ D2 ⊕ D3 = P
D0 ⊕ 2⊗D1 ⊕ 4⊗D2 ⊕ 8⊗D3 = QStripe
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❖ Erasure codes rely on finite fields (also called Galois fields)
• Add and multiply defined on fixed-width elements (usually 8 or 16 bits for 

erasure codes)
• Normal “arithmetic” rules apply

❖ This math can be done very quickly
• Addition is XOR
• Multiplication is more complex, but runs at gigabytes per second on 

modern CPUs
❖ Number of multiplications is usually the limiting factor

• There are usually shortcuts for creating the original symbols
• Rebuilding missing symbols (data) usually needs more multiplications

The math behind erasure codes
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❖ Long-term survival of data depends on several factors
• How many failures the erasure code can survive
• How much data is impacted by a failure
• How long it takes to restore protection after a failure

❖ Systems can vary any of these parameters to decrease the 
likelihood of data loss
• Fast rebuild ➡ less likely that too many failures will accumulate
• Tolerate more failures ➡ can rebuild more slowly and still be safe
• Decluster (spread data around) ➡ multiple independent failures unlikely to 

place large amounts of data in jeopardy
❖ Estimates of data reliability based on

• Analytical modeling
• Simulations

Reliability and erasure codes
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❖ Erasure codes can differ in many ways
• Number of data storage devices in a “stripe”

• Often, different stripes span different subsets of storage devices
• Number and type of failures that can be tolerated
• Amount of overhead
• Number of devices that must be written (or read) for

• Normal case
• Single device failure
• Larger-scale failures

• Complexity of generating the parity symbols
• Complexity of rebuilding missing data from surviving information

❖ Evaluating erasure codes is all about tradeoffs
• If there were such a thing as a perfect erasure code, we’d all use it!
• Choice of erasure code depends on what you want from it

Evaluating erasure codes
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❖ Reed-Solomon is the most common erasure code
• RAID-5 (N+1 parity) is a special case of Reed-Solomon
• RAID-6 (P+Q parity) is also a type of Reed-Solomon

❖ Reed-Solomon can be generated very quickly for 1–2 parities
• XOR is essentially
• Multiplication by 2 is extremely fast, and is all that’s needed for Q

❖ RS with more parity is a bit slower
• Each successive parity symbol is a linear combination of all of the data 

symbols in the stripe
❖ Rebuilding missing data is more expensive

• Invert an N×N matrix (once, so not so bad)
• Rebuild missing symbol using dot product of N existing symbols and one 

row of the matrix

Reed-Solomon codes
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XOR-based codes

8

❖ XOR is cheap ➡ just use XOR!
❖ Typically use bigger basic 

chunks on each device
• Example: run XORs across and 

diagonally
❖ There can be arbitrarily complex 

approaches to this
• Paper on STAIR codes in FAST 

2014
• Survive combinations of failed 

devices and failed individual 
chunks

• May combine XOR and 
multiplication
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Hierarchical (pyramid, LRC) codes
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❖ Differential RAID coverage
• N+1 RAID (usually) for smallish 

groups
• More parity covering multiple  

N+1 RAID groups
❖ Fast recovery from small 

failures
❖ Ability to recover (more slowly) 

from larger-scale failures
• Additional parity uses multiplication
• Additional parity is across a larger 

set of data elements
❖ Survives more failures with 

lower overhead
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❖ Combine multiple data symbols on a single device ➡ rebuilding 
requires reading fewer devices
• Less network traffic for rebuilding
• Still survives same number of failures
• May need to read more from a device just to return data
• Need to read more from each device, in most cases!

❖ Can require more multiplications for most operations
• Basic (non-failure) data reads
• Reconstruction

❖ May be useful in deep archive: access fewer devices to rebuild
• Performance of reads is often less important

Regenerating codes
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❖ Common cases:
• How long does a “regular” data read take?
• How long does it take if a device has failed and the data is on the device?
• How much does rebuilding impact performance even for non-affected data?

❖ How is data distributed across the devices?
• Typically declustered: each stripe uses a different set of devices

❖ How many device failures can the erasure code withstand?
• How long does it take to rebuild all of the data from a lost device, and where 

does it get rebuilt?
• How likely is it that data will be lost, and how much data would be lost?

❖ Is the bottleneck due to computation, network or I/O?
• Typically, computation is easiest to overcome
• I/O is often the hardest, especially for archival systems

❖ There are a lot more variations on erasure codes than we could cover 
today!

So what should you ask?
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Questions?
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We’re happy to answer questions  
about erasure codes!

elm@cs.ucsc.edu

http://www.ssrc.ucsc.edu/

mailto:elm@cs.ucsc.edu
http://www.ssrc.ucsc.edu/

